A NOTE ON EQUIREPLICATE BALANCED BLOCK DESIGNS FROM BIB DESIGNS

KISHORE SINHA
Birsa Agricultural University, Ranchi- 834006

(Received : September, 1987)

Summary

A method of construction of equireplicate balanced block designs with unequal block sizes from balanced incomplete block (BIB) designs, together with a table of new designs in the range $r \leqslant 30$ have been given.

Keywords : Equireplicate balanced block design; BIB design; t-design.

Introduction

A block design is called variance x-balanced if all elementary treatment contrasts are estimated with same variance. A connected block design is variance-balanced iff,

$$
C=\theta\left(I-v^{-1} J\right), \quad \text { where } \theta \text { is a constant. }
$$

A connected block design is efficiency-balanced iff,

$$
N K^{-1} N^{\prime}=\mu R+\{(1-\mu) / n\} r r^{\prime} \quad \text { where } r^{\prime}=\left(r_{1}, r_{2}, \ldots, r_{v}\right)
$$

$R=\operatorname{diag}\left(r_{1}, r_{2}, \ldots, r v\right), K=\operatorname{diag}\left(k_{1}, k_{2}, \ldots, k_{b}\right), n$ is number of experimental units, μ is constant and the efficiency factor of the design is $1-\mu$.

The balanced block designs considered here are equireplicate, hence these are variance-balanced as well as efficiency-balanced. The construction and tabulation of equireplicate balanced block designs have been
studied by Gupta and Jones [2], Agarwal and Kumar [1], Jones, Sinha and Kageyama [3], Sinha and Jones [7], Sinha [5, 6; 8]. The designs have been listed in the range $r \leqslant 30$.
Here, a method of construction of equireplicate balanced block designs with unequal block sizes from balanced incomplete block (BIB) designs and in general from t designs, together with a table of new designs in the range $r \leqslant 30$ have been given.

2. The Method

Theorem 1. The existence of a BIBD ($v^{\prime}, b^{\prime}, r^{\prime}, k^{\prime}, \lambda^{\prime}$) implies the existence of equireplicate balanced block designs with parameters:
$v=v^{\prime}-p, r=r^{\prime} k^{\prime}-p \lambda^{\prime}, p=1,2, k_{i}=k^{\prime}-i+1, i=2, p+1$
$b_{1}=k^{\prime}\left\{h^{\prime}-p r^{\prime}+(p-1)^{2} \lambda^{\prime}\right\}, b_{2}=p\left\{r^{\prime}-(p-1) \lambda^{\prime}\right\}\left(k^{\prime}-1\right)$
$b_{\mathrm{a}}=(p-1) \lambda^{\prime}\left(k^{\prime}:-2\right), \omega$ (the common sum of weighted concurrences) $=\lambda^{\prime}$.

Proof. Without loss of generality, the last p treatments are deleted from the BIBD. Then the set of blocks of size $\left(k^{\prime}-i+1\right), i=1,2$, $p+1$, are repeated $\left(k^{\prime}-i+1\right)$ times to obtain an equireplicate balanced block design with parameters (2.1).

When $p=1$, we obtain a set of r^{\prime} blocks of size $\left(k^{\prime}-1\right)$ and replication λ^{\prime}; and, another set of $b^{\prime}-r^{\prime}$ blocks of size k^{\prime} with replication $r \underline{\prime}-\lambda^{\prime}$.

When $p=2$, in the blocks of size $k^{\prime}-2$, we have $r_{1}=1, r_{2}=0$; in the blocks of size $k^{\prime}-1$, we have $r_{1}=2\left(\lambda^{\prime}-1\right), r_{2}=2 \lambda^{\prime}$; and in the blocks of size k^{\prime}, we have $r_{1}=r^{\prime}-2 \lambda^{\prime}+1, r_{2}=r^{\prime}-2 \lambda^{\prime}$. Since over all the sets of blocks, obtained by deleting the last two treatments of the BIBD, the design is pairwise-balanced design with $\lambda=\lambda^{\prime}$, and blocks of sizes $k^{\prime}-i+1$ are repeated $k^{\prime}-i+1$ times, we get the common sum of weighted concurrences as $\omega^{\prime}=\lambda^{\prime}$. In general, p treatments $(1 \leqslant p \leqslant t)$ may be deleted from a t-design, to obtain equireplicate balanced block designs, in a manner analogous to the above theorem.

Example. Let us consider a BIB design no. $R 15: y=8, b=14$, $r=7, k=4, \lambda=3$;
(0125) (1236) (0234) (1345) (2456) (0356) (0146)
(1247) (2357) (3467) (0457) (1567) (0267) (0137),
which is also a 3 -design with $\lambda_{3}=1$.

Now by deleting $p=1,2,3$ treatments, we get, respectively, equireplicate balanced designs :
(i) $v=7, r=25 . k_{i}=4,3, b_{1}=28, b_{2}=21, \omega=3,100 E=84.00$,
(ii) $v=6, r=22, k_{i}=4,3,2, b_{1}=12, b_{2}=24, b_{s}=6, \omega=3$,

$$
100 E=81.82,
$$

(iii) $v=5, r=19, k_{i}=4,3,2,1, b_{1}=4, b_{2}=18, b_{3}=12, b_{4}=1$,

$$
\omega=3,100 E=78.95 .
$$

TABLE 1-NEW EQUIREPLICATE BALANCED BLOCK DESIGNS

Sl. No.	\boldsymbol{v}	\boldsymbol{r}	k_{i}, $i=1,2,3$	b_{1}	b_{2}	b_{3}	ω	$100 E$	Source (No. of treatments deleted)
1	5	7	$3-i+1$	6	8	1	1	71.43	$R 10(2)$
2	5	12	$4-i+1$	4	12	4	2	-83.33	$R 11(2)$
3	5	13	3,2	15	10	-	2	7692	$R 7(1)$
4	6	22	$4-i+1$	12	24	6	3	81.82	$R 15(2)$
5	7	25	4,3	28	21	-	3	84.00	$R 15(1)$
6	7	10	$3-i+1$	15	12	1	1	70.00	$R 17(2)$
7	7	26	$4-i+1$	20	30	6	3	80.77	$R 19(2)$
8	8	20	$4-i+1$	20	24	4	2	80.00	$R 23(2)$
9	8	23	$3-i+1$	42	28	2	2	69.57	$R 25(2)$
10	8	29	4,3	40	24	-	3	82.76	$R 19(1)$
-11	9	21	$5-i+1$	15	24	6	2	85.71	$R 29(2)$
12	9	25	3,2	63	18	-	2	72.00	$R 25(1)$
13	9	30	$6-i+1$	12	30	12	3	90.00	$R 30(2)$
14	10	29	$3-i+1$	72	36	2	2	68.97	$R 34(2)$
15	11	14	$4-i+1$	24	18	2	1	78.57	$R 37(2)$
16	11	16	$3-i+1$	45	20	1	1	68.75	$R 38(2)$
17	13	19	$3-i+1$	66	24	1	1	68.42	$R 42(2)$
18	14	18	$4-i+1$	44	24	2	1	77.78	$R 46(2)$
19	17	25	$3-i+1$	120	32	1	1	68.00	$R 54(2)$
20	18	26	3,2	144	18	-	1	69.23	$R 54(1)$
21	19	23	$5-i+1$	60	32	3	1	82.61	$R 58(2)$
22	19	28	$3-i+1$	153	36	1	1	67.86	$R 59(2)$
23	20	29	3,2	180	20	-	1	68.96	$R 59(1)$
24	23	28	$5-i+1$	95	40	3	1	82.14	$R 65(2)$
25	23	30	$4-i+1$	140	42	2	1	76.67	$R 66(2)$
26	24	29	5,4	120	24	-	1	82.76	$R 65(1)$

Note on eqúlreplicaté balancbd block desigñ s

The R numbers are BIBDs from Raghavarao [4]. The efficiency factor of an equireplicate balanced block design is given by, $E=v \omega / r$.

ACKNOWLEDGEMENT

The author is highly thankful to the referee for useful suggestions.

REFERENCES

[1] Agarwal, G. G. and Kumar, S. (1984): On a class of variance balanced designs associated with GD designs, Calcutta Statistical Association Bull. 33 : 187-90.
[2] Gupta, S. C. and Jones, B. (1983) : Equireplicate balanced block designs with unequal block sizes, Biometrika 70(2) : 443-40.
[3] Jones, B., Sinha, K. and Kageyama, S. (1987) : Further equireplicate :variance balanced designs with unequal block'sizes, Utilitas Mathematica 32: 5-10.
[4] Raghavarao, D. (1971): Constructions and Combinatorial Problems in Design of Experiments, John Wiley and Sons, New York.
[5] Slnha, K. (1987) : Generalized partiallyibalanced incompleteghblock designs, Discrete Mathematics 67 : 31-58.
[6] Sinha, K. (1987) : Some new equireplicate balanced block designs, submitted to Statistics and Probability Letters. :
[7] Sinha, K. and Jones, B. (1987) : Further equireplicate balanced block designs with unequal block sizes, Statistics and Probability Letters 6 : 229-230.
[8] Sinha, K. (1988) : Further generalization of partially balanced incomplete block designs. Submitted for publications.

