Jour. Ind. Soc. Ag. Statistics Vol. XL, No. 2 (1988), pp. 150-153

A NOTE ON EQUIREPLICATE BALANCED BLOCK DESIGNS FROM BIB DESIGNS

KISHORE SINHA Birsa Agricultural University, Ranchi-834006 (Received : September, 1987)

SUMMARY

A method of construction of equireplicate balanced block designs with unequal block sizes from balanced incomplete block (BIB) designs, together with a table of new designs in the range $r \leq 30$ have been given.

Keywords : Equireplicate balanced block design; BIB design; t-design.

Introduction

A block design is called variance x-balanced if all elementary treatment contrasts are estimated with same variance. A connected block design is variance-balanced iff.

 $C = \theta (I - v^{-1}J)$, where θ is a constant.

A connected block design is efficiency-balanced iff,

 $NK^{-1}N' = \mu R + \{(1 - \mu)/n\} rr'$ where $r' = (r_1, r_2, \ldots, r_{\nu})$,

 $R = \text{diag}(r_1, r_2, \ldots, r^{\nu}), K = \text{diag}(k_1, k_2, \ldots, k_b), n \text{ is number of experimental units, } \mu \text{ is constant and the efficiency factor of the design is } 1 - \mu.$

The balanced block designs considered here are equireplicate, hence these are variance-balanced as well as efficiency-balanced. The construction and tabulation of equireplicate balanced block designs have been NOTE ON EQUIREPLICATE BLANCED BLOCK DESIGNS

studied by Gupta and Jones [2], Agarwal and Kumar [1], Jones, Sinha and Kageyama [3], Sinha and Jones [7], Sinha [5, 6, 8]. The designs have been listed in the range $r \leq 30$.

Here, a method of construction of equireplicate balanced block designs with unequal block sizes from balanced incomplete block (BIB) designs and in general from t-designs, together with a table of new designs in the range $r \leq 30$ have been given.

2. The Method :

THEOREM 1. The existence of a BIBD $(v', b', r', k', \lambda')$ implies the existence of equireplicate balanced block designs with parameters:

 $\begin{aligned} v &= v' - p, r = r'k' - p\lambda', p = 1, 2, k_i = k' - i + 1, i = 2, p + 1\\ b_1 &= k' \{b' - pr' + (p - 1)^2 \lambda'\}, b_2 = p \{r' - (p - 1) \lambda'\} (k' - 1)\\ b_3 &= (p - 1) \lambda' (k' - 2), \omega \text{ (the common sum of weighted concurrences)}\\ &= \lambda'. \end{aligned}$ (2.1)

Proof. Without loss of generality, the last p treatments are deleted from the BIBD. Then the set of blocks of size (k' - i + 1), i = 1, 2, p + 1, are repeated (k' - i + 1) times to obtain an equireplicate balanced block design with parameters (2.1).

When p = 1, we obtain a set of r' blocks of size (k' - 1) and replication λ' ; and, another set of b' - r' blocks of size k' with replication $r' - \lambda'$.

When p = 2, in the blocks of size k' - 2, we have $r_1 = 1$, $r_2 = 0$; in the blocks of size k' - 1, we have $r_1 = 2$ ($\lambda' - 1$), $r_2 = 2\lambda'$; and in the blocks of size k', we have $r_1 = r' - 2\lambda' + 1$, $r_2 = r' - 2\lambda'$. Since over all the sets of blocks, obtained by deleting the last two treatments of the BIBD, the design is pairwise-balanced design with $\lambda = \lambda'$, and blocks of sizes k' - i + 1 are repeated k' - i + 1 times, we get the common sum of weighted concurrences as $\omega = \lambda'$. In general, p treatments ($1 \le p \le t$) may be deleted from a t-design, to obtain equireplicate balanced block designs, in a manner analogous to the above theorem.

EXAMPLE. Let us consider a BIB design no. $R15: v = 8, b = 14, r = 7, k = 4, \lambda = 3;$

(0125) (1236) (0234) (1345) (2456) (0356) (0146)

(1247) (2357) (3467) (0457) (1567) (0267) (0137),

which is also a 3-design with $\lambda_3 = 1$.

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Now by deleting p = 1, 2, 3 treatments, we get, respectively, equireplicate balanced designs :

- (i) v = 7, r = 25. $k_i = 4$, 3, $b_1 = 28$, $b_2 = 21$, $\omega = 3$, 100E = 84.00, (ii) v = 6, r = 22, $k_i = 4$, 3, 2, $b_1 = 12$, $b_2 = 24$, $b_3 = 6$, $\omega = 3$, 100E = 81.82,
- (iii) $v = 5, r = 19, k_i = 4, 3, 2, 1, b_1 = 4, b_2 = 18, b_3 = 12, b_4 = 1, \omega = 3, 100E = 78.95.$

SI. No.	v	r	i = 1, 2, 3	bi	b_2	b_3	ω	100E	Source (No. of treatments deleted)
. 1	5	7	3 - i + 1	6.	8	1	1	71.43	R10 (2)
2	5	12	4 - i + 1	4	12	4	2	- 83.33	R11 (2)
3	5	13	3,2	15	10		2	76 92	. R7_(1)
. 4	6	22	4 - i + 1	12	24	6	3	81.82	R15 (2)
5	7	25	4, 3	28	21		3	84.00	Ř15 (1)
6	7	10	3 - i + 1	15	12	Í	1 [.]	70.00	R17 (2)
. 7	7	2 6	4 - i + 1	20	30	6	. 3	80.77	R19 (2)
8	8	20	$4 \rightarrow i + 1$	- 20	24	4	2	80.00	R23 (2)
و .	8	23	3 - i + 1	42	28	2	2	69.57	R25 (2)
10	8	29	4, 3	40	24		3	82.76	R19 (1)
-11	9	[.] 21	5 - i + 1	15	24	6	2	85.71	R29 (2)
12	9	25	3, 2	63	18	-	2	72.00	R25 (1)
.13	9	30	6 - i + 1	12	30	12	3	90.00	R30 (2)
14	10	29	(3 - i + 1)	72	36	2	2	68.97	R34 (2)
15	· 11 ·	14	4 - i + 1	24	18	2	1	78.57	R37 (2)
16	11	16	3 - i + 1	45	20	1	1	68.75	R38 (2)
17	13	19	3 - i + 1	66	24	- 1	- 1	68.42	R42 (2)
18	14	18	4 - i + 1	44	24	2	` 1	77.78	R46 (2)
19 /		25	3 - i + 1	120	32	1	1	68.00	R54 (2)
20	18	26	3, 2	144	18	,	1 -	69.23	R54 (1)
21	19	23	5 - i + 1	60	32	3	1	82.61	R58 (2)
22	19	28	3 - i + 1	153	36	1	1	67.86	R59 (2)
23	20	29	3, 2	180	20		· 1	6 8.96	R59 (1)
24	23	28	5 - i + 1	95	40	3	1	82:14	R65 (2)
25	23	30 -	-	140	42	2	1	76.67	R66 (2)
26	24	29	5,4	120	24	´	1	82.76	R65 (1)

TABLE 1-NEW EQUIREPLICATE BALANCED BLOCK DESIGNS

152

NOTE ON EQUIREPLICATE BALANCED BLOCK DESIGNS.

The *R* numbers are BIBDs from Raghavarao [4]. The efficiency factor of an equireplicate balanced block design is given by, $E = v\omega/r$.

ACKNOWLEDGEMENT

The author is highly thankful to the referee for useful suggestions.

REFERENCES

- [1] Agarwal, G. G. and Kumar, S. (1984) : On a class of variance balanced designs associated with GD designs, *Calcutta Statistical Association Bull.* 33 : 187-90.
- [2] Gupta, S. C. and Jones, B. (1983): Equireplicate balanced block designs with unequal block sizes, *Biometrika* 70(2): 443-40.
- [3] Jones, B., Sinha, K. and Kageyama, S. (1987): Further equireplicate variance balanced designs with unequal block sizes, Utilitas Mathematica 32: 5-10.

[4] Raghavarao, D. (1971): Constructions and Combinatorial Problems in Design of Experiments, John Wiley and Sons, New York.

- [5] Slnha, K. (1987) : Generalized partially balanced incomplete block designs, Discrete Mathematics 67 : 31-58.
- [6] Sinha, K. (1987) : Some new equireplicate balanced block designs, submitted to Statistics and Probability Letters.

[7] Sinha, K. and Jones, B. (1987): Further equireplicate balanced block designs with unequal block sizes, Statistics and Probability Letters 6: 229-230.

[8] Sinha, K. (1988) : Further generalization of partially balanced incomplete block designs. Submitted for publications.